Thixotropic Phenomena in Water: Quantitative Indicators of Casimir-Magnetic Transformations from Vacuum Oscillations (Virtual Particles)
نویسنده
چکیده
The ~1.5 × 10−20 J which is considered a universal quantity and is associated with the movement of protons in water also relates to the ratio of the magnetic moment of a proton divided by its unit charge, multiplied by viscosity and applied over the O-H distance. There is quantitative evidence that thixotropy, the “spontaneous” increased viscosity in water when undisturbed, originates from the transformation of virtual particles or vacuum oscillations to real states through conversion of Casimir-magnetic energies that involve the frequency of the neutral hydrogen line and the upper bound threshold value for intergalactic magnetic fields. The results indicate that 1⁄2 of a single electron orbit is real (particle) and the other 1⁄2 is virtual (wave). The matter equivalent per s for virtual-to-real states for electrons in 1 mL of water with a neutral pH is consistent with the numbers of protons (H+) and the measured range of molecules in the coherent domains for both width and duration of growth and is similar to widths of intergalactic dust grains from which planets and stars may condense. The de Broglie momentum for the lower boundary of the width of coherent domains multiplied by the fine structure velocity of an electron is concurrent with the quantum when one proton is being removed from another and when the upper boundary of the rest mass of a photon is transformed by the product of velocities for putative “entanglement” and light. Theoretical and experimental results indicate that components of thixotropy, such as specific domains of intercalated water molecules, could display excess correlations over very large distances. Because the energies of the universal quantity and water converge it may be a special conduit for discrete transformations from virtual to real states. OPEN ACCESS Entropy 2015, 17 6201
منابع مشابه
Gravitation of the Casimir Effect and the Cosmological Non-Constant
Whereas the total energy in zero-point fluctuations of the particle physics vacuum gives rise to the cosmological constant problem, differences in the vacuum give rise to real physical phenomena, such as the Casimir effect. Hence we consider the zero-point energy bound between two parallel conducting plates — proxy for a solid slice of cosmological constant — as a convenient laboratory in which...
متن کاملCasimir effect in external magnetic field
In this paper we examine the Casimir effect for charged fields in presence of external magnetic field. We consider scalar field (connected with spinless particles) and the Dirac field (connected with 1/2-spin particles). In both cases we describe quantum field using the canonical formalism. We obtain vacuum energy by direct solving field equations and using the mode summation method. In order t...
متن کاملElectromechanical Performance of NEMS Actuator Fabricated from Nanowire under quantum vacuum fluctuations using GDQ and MVIM
The Casimir attraction can significantly interfere the physical response of nanoactuators. The intensity of the Casimir force depends on the geometries of interacting bodies. The present paper is dedicated to model the influence of the Casimir attraction on the electrostatic stability of nanoactuators made of cylindrical conductive nanowire/nanotube. An asymptotic solution, based on path-integr...
متن کاملCasimir effect in external magnetic field
We compute the influence of an external magnetic field on the Casimir energy of a massive charged scalar field confined between two parallel infinite plates. For this case the obtained result shows that the magnetic field inhibits the Casimir effect. The Casimir effect can be generally defined as the effect of a non-trivial space topology on the vacuum fluctuations of relativistic quantum field...
متن کاملChirality-preserving neutrino oscillations in an external magnetic field
Neutrinos propagating in matter acquire an effective electromagnetic vertex induced by their weak interactions with the charged particles in the background. In the presence of an external magnetic field the induced vertex affects the flavor transformations of mixed neutrinos in a way that, in contrast to the oscillations driven by an intrinsic magnetic moment interaction, preserve chirality. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015